Heavy flavor systematics from PHENIX

Craig Ogilvie, Iowa State University
On behalf of the PHENIX Collaboration

• Complexity of interpreting data from HI collisions
 • Use systematics: spectra, elliptic flow,…
 • Present d+Au, Cu+Cu, excitation function,…
• Which leads to the complexity of interpreting d+Au…
Complexity of d(p)+A collisions

- **Nuclear structure functions**
 - Shadowing, saturation at low-x
 - Anti-shadowing at moderate, high-x
- **Initial state scattering**
 - Often modeled as increase in effective kT
 - Likely largest impact at RHIC where spectra are softer
- **Possible collective effects**
 - Barbara Jacak’s talk on Wed
- **Final state energy-loss, absorption,**
- **Centrality classification**
CNM I: d+Au heavy-flavor at 200 GeV

- Non-photonic e, from heavy-flavor decays

Significant enhancement at moderate p_T

$d+Au$ @ $\sqrt{s_{NN}} = 200$ GeV

a) 0-20%

b) 60-88%
CNM II: d+Au heavy-flavor at 200 GeV

- Non-photonic e, from heavy-flavor decays
 Enhancement present in min-bias
 Effect not caused by challenges of centrality definition

CNM IV: Forward, backward μ from HF decay

Forward rapidity suppressed
Likely shadowing at low-x in Au

Backward rapidity enhanced
anti-shadowing at higher x in Au?
or increase in $<k_T>$ due to initial scattering?

cogilvie@iastate.edu

Sep 27, 2013
CNM III: Identified hadron spectra in dA

Cronin peak: proton $\sim >$ HF$_e$
Why?
CNM II: d+Au heavy-flavor at 200 GeV

Does $<k_T>$ increase have larger impact when p+p spectrum is soft?

spectra = convolution of scattering + fragmentation

Or recombination effects in hadronization?

Or collective? Or...

Opportunity for theory impact
Example with $\pi^0 R_{dA}$

- π^0 calc from I. Vitev
- Reasonable reproduction of π^0
 - Nuclear structure function
 - Cronin
 - Large initial state multiple-scattering
 - Final state E_{loss}
- Need calculations for heavy-flavor R_{dA}

Vitev et al., PRD 74 (2006)

Sep 27, 2013
J/ψ CNM

EPS09 nuclear structure functions plus breakup
Reasonable reproduction, misses centrality dependence

BUT, charm is enhanced at moderate p_T (non-photonic electrons $R_{dA}>1$)

1) Do these calculations reproduce open charm $R_{dA}>1$?
2) If not, then more effective suppression needed for J/ψ
Normalize J/ψ by HF?

J/ψ at mid-y suppressed @ low-\(pt\)

Charm is enhanced at moderate \(pt\)
(non-photonic electrons \(R_{dA}>1\))

Alternative: use dA HF spectra as baseline?

- J/ψ
- \(HF\) electron
- Question, what axis? \(p_T\)?
Connect d+Au to A+A

1) Enhancement in d+Au + energy-loss \Rightarrow suppression in A+A
2) Models must attempt to reproduce both d+A and A+A

Min-bias collisions
One method to organize results

Common suppression pattern when normalized by square of R_{dA}

Does this take into account impact of initial state increase of $\langle k_T \rangle$?

Matt Durham

cogilvie@iastate.edu
Intermediate Cu+Cu: links d+A and Au+Au

Peripheral Cu+Cu (yellow) Enhancement ~ central d+Au (blue)
d+Au to Cu+Cu to Au+Au

Interplay of two effects
CNM increases yield, competes with energy-loss suppression
d+Au to Cu+Cu to Au+Au

Higher p_T

CNM increases yield, stronger energy-loss suppression
Cu+Cu heavy-flavor, forward rapidity

Large uncertainties: Forward y in central d+Au ~ peripheral Cu+Cu
Additional lever arm: beam energy

\(\pi^0 \quad \text{Phys. Rev. Lett. 109, 152301 (2012)} \)

charged hadrons from Au+Au

\[R_{AA} \]

\begin{align*}
\text{AuAu, Most central, 0-10\%} \\
Vitev Calculation \\
\bullet \ s = 39 \text{ GeV} \\
\square \ s = 62.4 \text{ GeV} \\
\triangle \ s = 200 \text{ GeV} \\
\end{align*}

\[p_T \text{ [GeV/c]} \]

Dominant energy-loss at high \(\sqrt{s} \)
Transitions to stronger Cronin effect at lower \(\sqrt{s} \)

Sep 27, 2013
Need R_{dA} at lower-beam energy

- Not in current RHIC running plan :(
 - How does R_{dA} change from 200 GeV to 62 GeV
 - Three beam energies (62, 200 GeV, LHC) constrains interplay of structure function, initial state scattering

- R_{dA} calculations at 62 GeV
 - π R_{dA} \sim 2 at 62 GeV
 - π R_{dA} \sim 1.2 at 200 GeV

Non-photonic electrons Au+Au 62 GeV

Lower beam energy changes interplay of two effects
 Stronger CNM competing with weaker energy-loss
Forthcoming PHENIX publication
 spectra with smaller systematics
 comparison with p+p, R_{AA} etc.
If your model reproduces 200 GeV and 2.76 TeV heavy flavor R_{AA}
 Final call for 62 GeV HF R_{AA} prediction

Sep 27, 2013
HF v_2 at lower beam energy

HF flow is > 0 at 62 GeV, but uncertainties large
V_2 2nd constraint on e-loss Au+Au 200 GeV

- Low-pt Charm v_2, extent of thermalization of HF
- Challenge for theory to reproduce both R_{AA}, v_2

Many calculations, theory updates past few years
One example, P.B. Gossiaux SQM 2013

Elastic + radiative LPM

Elastic + radiative energy loss
With running coupling α

Sep 27, 2013
Is $\delta p_T/p_T$ what we should be plotting for HF?

Suggestion in spirit of workshop,
This is being worked on for HF, but no results available yet
VTX Upgrade @ PHENIX

Two layers of silicon pixel detectors
Two layers of silicon strip detectors
Four layers in endcaps
Tracks extrapolate back to collision vertex
Displaced vertices \Rightarrow charm (D), beauty (B)
Requires \sim 50 μm precision

Installed 2010-12
VTX p+p results

DCA data are fit by expected DCA shapes of

- Signal components: \(c \rightarrow e \) and \(b \rightarrow e \) (right column)
- Background components (left column)

charm/bottom assumes
PYTHIA spectra

\[\frac{b}{b+c} = 0.22 \pm 0.06 \]

Fit range:
\[0.2 < |DCA| < 1.5 \text{ (mm)} \]
VTX p+p results

FONLL consistent with $b/(b+c)$ data

PHENIX Preliminary

FONLL, $y = 0$
Physics Goal

Energy-loss heavy-flavor \Rightarrow understand nature of sQGP

- Progress on understanding many details
- If a model reproduces a broad range of data
 - Can we infer any characteristics of QGP?
- Either direct via a parameter of model
 - Diffusion parameter
- Or run same dynamical model in a “box”, e.g. radiation + collision E_{loss}
 - Infer effective transport parameters
- Which characteristics of sQGP are accessible this way and can we communicate this to our fellow physicists?
- Maybe too many unsettled aspects yet
Summary

- Complexity of interpreting d+Au
 - Levers: centrality, A, y, \sqrt{s}, change impact of
 - Structure function, initial state scattering, e-loss,...
 - HF R_{dA} enhancement up to factor of 1.5
 - Call for model calculations
 - Is dAu HF a better baseline for R_{AA} HF and dAu J/ψ production??

- Complexity of interpreting data from HI collisions
 - Cu+Cu HF yields smoothly connects dAu to Au+Au
 - Competition between enhancement + suppression
 - Change this competition
 - Au+Au HF data @ 62 GeV, need dAu running at 62 GeV
Backup slides
X-ranges

<table>
<thead>
<tr>
<th></th>
<th>SPS Pb+Pb 17 GeV</th>
<th>RHIC Au+Au 200 GeV</th>
<th>LHC Pb+Pb 5.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-cbar</td>
<td>$X \sim 10^{-1}$</td>
<td>$X \sim 10^{-2}$</td>
<td>$X \sim 10^{-3}$ to 10^{-4}</td>
</tr>
</tbody>
</table>

Eskola et al. JHEP 0904 (2009) 065
R_{AA} of heavy-flavor: from RHIC to LHC

Note to Craig add citations
• e and μ baseline measurements in central and forward rapidity
• Consistent with FONLL upper limit
Charm production at 62 GeV reproduced by FONLL
pp: pQCD calculations vs data

HF-lepton p_T-differential cross section

200 GeV

2.76 TeV

7 TeV

 PHENIX, PRC84 (2011) 044905
N. Apadula (WWND2013)

ALICE, PRL 109 (2012) 112301

ALICE, PRD86 (2012) 112007
ATLAS, PLB707 (2012) 438

- HF-decay electrons and muons at central and forward y
- FONLL: “b > c” for $p_T > 4$ (5) GeV/c at RHIC (LHC)
Open heavy flavor data

LHC fit, RHIC extrapolation parameter-free

Constrained by LHC pion fit

April 17th, 2013

Alessandro Buzzatti – LBNL
Less bound charmonia in dAu collisions

All three systems consistent within uncertainties

arXiv:1305.5516
Less bound charmonia in dAu collisions

ψ' suppression stronger than J/ψ for more central dAu collisions

Stronger effective breakup cross-section?

arXiv:1305.5516
Photon in dA